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Lecture 13 Highlights 
Phys 402 

 
 Up to this point, we have only considered static solutions to the Schrödinger 
equation.  It is now time to consider what happens to a quantum system when it is given a 
time-dependent perturbation.  The philosophy of this calculation is as follows.  Consider a 
quantum system governed by a time-independent ‘baseline’ or unperturbed Hamiltonian 

0H that has solutions to the time-dependent Schrödinger equation 
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perturbed eigen-energy.  Suppose that this system is prepared in a particular eigenstate, say 
the 𝑛𝑛th state (where ‘𝑛𝑛’ is a list of quantum numbers in general).  Next consider turning on 
a “small” time-dependent perturbing potential such that the new Hamiltonian is given by 
ℋ0 + 𝜆𝜆ℋ1(𝑟𝑟, 𝑡𝑡), where 1<<λ and the perturbation is in general a function of both 
position and time.  Let this perturbation act for some time ‘t’, and then have it stop.  Now 
the system is governed once again by the unperturbed time-independent Hamiltonian 0H .  
The question is this: what is the probability that the quantum system is now in some other 
state “𝑗𝑗”?  This is equivalent to asking for the probability that the system has made a 
quantum jump from state ‘𝑛𝑛’ to state ‘𝑗𝑗’. 

To address this question we employ a time-dependent version of perturbation 
theory.  While the perturbation is on, the wavefunction becomes ),( trΨ and satisfies the 
new time-dependent Schrödinger equation: 
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We employ the trick of expanding the new wavefunction around the unperturbed 
solution plus a series of ever smaller corrections, ...2210 +Ψ+Ψ+Ψ=Ψ nnnn λλ , and 
substitute this into the time-dependent Schrödinger equation.  Collecting like-powers of λ
yields 

0000 : nn dt
diH Ψ=Ψ λ , which is the original unperturbed problem, 

10101 ': nnn dt
diHH Ψ=Ψ+Ψ λ .  We use the completeness postulate of quantum mechanics 

to express the first order correction to the wavefunction as an infinite sum over all the 
unperturbed eigenfunctions: ),()( 01 trtanln






Ψ=Ψ ∑  with unknown time-dependent 

coefficients )(tanl .  Substituting this into the 1λ equation and projecting out the (arbitrarily-
chosen) jth eigenstate yields the amplitude transition rate from state ‘n’ to state ‘j’: 
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Hence if we know the perturbing Hamiltonian, this matrix element can be computed and 
the result integrated over time to find the transition amplitude from state ‘n’ to state ‘j’,

)(tanj .  The probability of the transition is proportional to
2

)(tanj . 
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 We then considered two-level systems, as discussed by Griffiths in the first few 
pages of Chapter 11.  This is a manageable system that allows us to see how time-dependent 
perturbation works in a relatively simple, but still very useful, system. 
 A 2-level system with states ‘a’ and ‘b’ subject to a time-dependent perturbation 
will have a wavefunction of the form: 
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Assuming that the system started in state “a” at time 𝑡𝑡 = 0, just before the time-dependent 
perturbation began, gives the initial conditions: 
 1)0( =ac ,  0)0( =bc . 
Demanding that )(tΨ satisfies the time-dependent Schrödinger equation, we can solve for 
the rate at which amplitude builds up in state ‘b’: 
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 This result is a special case of Eq. (1) above.      

 
 The quantum state of a two-level system (TLS) is specified nicely by a point on the 
Bloch sphere.  A two-level system has a two-dimensional Hilbert space.  This can be 
represented as a point on a sphere of unit radius in 3-space.  One can prepare the system in 
a superposition of the two states as, |Ψ⟩ = 𝑐𝑐𝑎𝑎(0)|0⟩ + 𝑐𝑐𝑏𝑏(0)|1⟩, where |0⟩ represents the 
ground state and |1⟩ is the excited state, and the 𝑐𝑐’s are complex numbers in general.  By 
mapping this on to the unit sphere, we can represent any state of this TLS in terms of the 
“latitude” and “longitude” angles as |Ψ⟩ = cos 𝜃𝜃
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|0⟩ + 𝑒𝑒𝑖𝑖𝑖𝑖 sin 𝜃𝜃
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|1⟩.  Note that this 

wavefunction is normalized.  The two pure states |0⟩ and |1⟩ are given by 𝜃𝜃 = 0 and 𝜃𝜃 =
𝜋𝜋, respectively.  Any possible superposition can be represented with general values for the 
two angles (see the class web site for examples).  Starting from the north pole of the Bloch 
sphere (i.e. state |0⟩) one can perform two operations to get to any other possible state: i) 
Rotate about the x-axis (or y-axis) by an angle 𝜃𝜃, and ii) Rotate about the z-axis by angle 
𝜙𝜙.  Moving from the north pole to the south pole is called a NOT operation, and can be 
accomplished with a “Rabi oscillation” process, which we now investigate. 
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https://www.physics.umd.edu/courses/Phys402/AnlageFall22/Bloch%20Sphere%20Notes%20by%20Fred%20Wellstood.pdf

